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Community ecology data 

● Multiple responses (potentially high-dimensional)

● Non-continuous responses with evident 
mean-variance relationship

● May have other data structures, but we will not 
worry about that in this presentation
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● Great Barrier Reef Seabed biodiversity project

● For the purposes of this talk, we have:
○ Presence-absence (binary) responses
○ N = 1146 sites sampled
○ J = 235 species (median recorded prevalence = 31)

● For the purposes of this talk, we have:
○ Nine continuous environmental covariates
○ Standardized all to have mean zero and variance one

Community ecology data 
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Species archetype models (SAMs)

● Aim: To understand how the assemblage distribution varies as a function of environment 

● A starting point is to fit a stacked model e.g., separate binary logistic regression models to 
each species
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Species archetype models (SAMs)

● Aim: To understand how the assemblage distribution varies as a function of environment 

● A starting point is to fit a stacked model e.g., separate binary logistic regression models to 
each species



● Aim: To understand how the assemblage distribution varies as a function of environment 

● Cluster species with similar environmental responses into so-called archetypal responses
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Species archetype models (SAMs)



● Aim: To understand how the assemblage distribution varies as a function of environment 

● Cluster species with similar environmental responses into so-called archetypal responses
○ A “partial” finite mixture of regression models
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Species archetype models (SAMs)
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Species archetype models (SAMs)

● Unlike standard mixture models, partial finite mixture of regression models are more 
computationally burdensome to fit

○ Species-specific intercepts/dispersion parameters often done separately in a conditional maximization 
step (ECM) 

○ Or update all parameters in a single M-step. This requires a single, large memory GLM which may not 
scale well with N and J (and K)
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Approximate and scalable SAMs (asSAMs)

● Approximate each species-archetype contribution with a quadratic/normal approximation
○ Note the maximizer is species-specific!
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Approximate and scalable SAMs (asSAMs)

● Approximate each species-archetype contribution with a quadratic/normal approximation
○ Note the maximizer is species-specific!

● After some algebraic manipulation and collecting terms that constant wrt parameters
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Approximate and scalable SAMs (asSAMs)

● asSAM = finite mixture of multivariate normals with known covariance matrices

●  asSAMs is very amenable to using EM-algorithm 
○ M-step updates are all closed-form (details in manuscript)
○ Need a pre-step to form the quadratic/normal approximation, but we know how to do this!

● Model selection is easy/scalable
○ Choose K using BIC or some variation thereof
○ Archetypal (mixture) coefficients: Deploy sparse linear modelling ideas e.g., LASSO, SCAD, BAR etc…
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Application to Great Barrier Reef dataset

● Great Barrier Reef Seabed biodiversity project

● Recall:
○ Presence-absence (binary) responses
○ N = 1146 sites sampled
○ J = 235 species (median recorded prevalence = 31)

○ Nine continuous environmental covariates
○ Standardized all to have mean zero and variance one

● asSAMs application
○ All covariates included as linear terms only
○ Bernoulli distribution with logit link
○ BIC to choose K; BAR penalty to perform selection on 

archetypal coefficients (penalized asSAMs or pasSAMS)



● Great Barrier Reef Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with high probability; this is 

typical of SAMs
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Application to Great Barrier Reef dataset



● Great Barrier Reef Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with high probability; this is 

typical of SAMs

● 5-fold spatial cross-validation to compare predictions
○ Separate logistic regression models
○ Penalized asSAMs or pasSAMs
○ Unpenalized asSAMs i.e., no selection on archetypal 

coefficients
○ SAMs fitted ecomix (no approximations)
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Application to Great Barrier Reef dataset



● Example: Great Barrier Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with relatively high probability; 

this is typical of (as)SAMs

● 5-fold spatial cross-validation to compare predictive 
performance

○ asSAMs
○ Separate logistic regression models
○ Separate logistic regression models + glmnet
○ SAMs fitted ecomix (no approximations)
○ asSAMs with no selection archetypal coefficients
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Application to Great Barrier Reef dataset

pasSAMs worse

pasSAMs better

pasSAMs worse

pasSAMs better

pasSAMs better

pasSAMs worse



● Great Barrier Reef Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with relatively high probability

● 5-fold spatial cross-validation to compare predictions
○ Separate logistic regression models
○ Penalized asSAMs or pasSAMs

■ ~5.7 mins per fold
○ Unpenalized asSAMs i.e., no selection on archetypal 

coefficients
■ ~42 seconds per fold

○ SAMs fitted ecomix (no approximations)
■ ~56 mins per fold
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Application to Great Barrier Reef dataset



● Manuscript in review; https://github.com/fhui28/assam 

● The package allows:
○ A number of response types
○ Fast approximate bootstrap for uncertainty quantification
○ Specific-specific effects besides intercepts e.g., sampling effort, survey effect
○ Specific-specific spatial fields

● Future extensions to semi-parametric/ML-based archetypal responses
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Concluding remarks

https://github.com/fhui28/assam


Questions?
◉ francis.hui@anu.edu.au  
◉ https://francishui.netlify.app/ 

Thanks for listening!
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Community ecology data 

● Great Barrier Reef Seabed biodiversity project

● For the purposes of this talk, we have:
○ Presence-absence (binary) responses
○ N = 1146 sites sampled
○ J = 235 species (median recorded prevalence = 31)



● Aim: To understand how each species’ distribution varies as a function of environment 

● Cluster species with similar environmental responses into so-called archetypal responses
○ Simpler interpretation and easier to deploy for ecologist/policy makers
○ Borrow strength across species
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Species archetype models (SAMs)
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Species archetype models (SAMs)

● Unlike standard mixture models, partial finite mixture of regression models are more 
computationally burdensome to fit

○ Some ways to get around this, but not easy to generalize if we have random effects, smooth covariate 
terms etc…
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Species archetype models (SAMs)

● Unlike standard mixture models, partial finite mixture of regression models are more 
computationally burdensome to fit

○ Some ways to get around this, but not easy to generalize if we have random effects, smooth covariate 
terms etc…

● Unlike (partial) finite mixture of regressions model in other settings, we have multiple 
observations per “object” we wish to cluster (N sites within each species) 



● Aim: To understand how each species’ distribution varies as a function of environment 

● Cluster species with similar environmental responses into so-called archetypal responses
○ Simpler interpretation and easier to deploy for ecologist/policy makers
○ Borrow strength across species
○ A “partial” finite mixture of regression models
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Species archetype models (SAMs)
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Approximate and scalable SAMs (asSAMs)

● Inference via bootstrapping
○ Uncertainty due to making the quadratic/normal approximation 
○ Uncertainty due to sampling variability given on the approximation 
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Approximate and scalable SAMs (asSAMs)

● Fast approximate bootstrap for asSAMs 
○ Uncertainty due to making the quadratic/normal approximation (goes away with large N?)
○ Uncertainty due to sampling variability given the approximation (dominant source; goes away with 

large J and N?)



28

Approximate and scalable SAMs (asSAMs)

● Fast approximate bootstrap for asSAMs
○ Bootstrap confidence intervals for parameter estimates, fitted values, predictions follow



● Example: Great Barrier Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with relatively high probability; 

this is typical of (as)SAMs
○ The rarity of most species is clear!
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Application to Great Barrier Reef dataset



● Great Barrier Reef Seabed biodiversity project

● asSAMs application
○ K = 14 species archetypes chosen
○ All covariates important
○ Environment-agnostic archetype
○ Most species classified with relatively high probability; 

this is typical of (as)SAMs
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Application to Great Barrier Reef dataset



● Manuscript in preparation; https://github.com/fhui28/assam 

● The package allows:
○ A number of response types
○ Specific-specific effects besides intercepts e.g., sampling effort, survey effect
○ Specific-specific spatial fields

● Extensions to semi-parametric/ML-based archetypal responses
○ Careful consideration of how to perform the quadratic/normal approximation (overfitting is an 

issue here)  
○ Spatially-varying effects/spatio-temporal asSAMs follow along similar lines

● Hierarchical asSAMs?
○ Fit a finite mixture on the species-specific slopes rather than on the responses
○ Allows for heterogeneity within an archetype
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Concluding remarks

https://github.com/fhui28/assam
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Appendix


