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Community ecology data

e Multiple responses (potentially high-dimensional)
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Community ecology data

e Great Barrier Reef Seabed biodiversity project

© Overleaf, Onl. PaperCutLog... @ SelectorGadget

Home / Resource

CSIRO - Great Barrier Reef seabed biodiversity study 2003-2006

(NCMI) Inf and Data Centre (IDC) on Jun 8, 2C

ublished by CSIRO National Collectior d

e Forthe purposes of this talk, we have:
o  Presence-absence (binary) responses

o N =1146 sites sampled
o J =235 species (median recorded prevalence = 31)

e Forthe purposes of this talk, we have:
o Nine continuous environmental covariates
o Standardized all to have mean zero and variance one
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Species archetype models (SAMs)

e Aim: To understand how the assemblage distribution varies as a function of environment

e Astarting point is to fit a stacked model e.g., separate binary logistic regression models to
each species

Consider a set of species j = 1,...,J recorded at a set of observational units i = 1,..., N, along
with measured covariates x;. Then a stacked model is characterized by

9(wi) = mij = = B;
[yi;] = Exp-Fam (5, @;)

() = Z <Z log f (ysjl 5, cbj))

j=1 \i=1



Species archetype models (SAMs)

e Aim: To understand how the assemblage distribution varies as a function of environment

e Astarting point is to fit a stacked model e.g., separate binary logistic regression models to
each species
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Species archetype models (SAMs)

Predicted Probability

Aim: To understand how the assemblage distribution varies as a function of environment

A starting point is to fit a stacked model e.g., separate binary logistic regression models to

each species
p SAMs
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Species archetype models (SAMs)
e Aim: To understand how the assemblage distribution varies as a function of environment

e Cluster species with similar environmental responses into so-called archetypal responses

Consideraset of species j = 1, ..., .J recorded at a set of observational unitsi = 1, ..., N, along with
covariates x;. Let z;j;, = 1 if species j = 1,...,J belongs to archetype k = 1,..., K and zero other-
wise. If we denote ;1 = E(yi;|@i, zjx = 1), then a species archetypal model or SAM is characterized
by

9(pije) = aj + ] Br
[Yij] 25k = 1] = Exp-Fam(u;jx, @)

J K N
(@) = log {Zwk T /il ij)}
j=1 k=1 i=1



Species archetype models (SAMs)
e Aim: To understand how the assemblage distribution varies as a function of environment

e Cluster species with similar environmental responses into so-called archetypal responses
o A“partial” finite mixture of regression models

Consideraset of species j = 1, ..., .J recorded at a set of observational unitsi = 1, ..., N, along with
covariates x;. Let z;j;, = 1 if species j = 1,...,J belongs to archetype k = 1,..., K and zero other-
wise. If we denote ;1 = E(yi;|@i, zjx = 1), then a species archetypal model or SAM is characterized
by

9(pije) = aj + ] Br
[Yij] 25k = 1] = Exp-Fam(u;jx, @)

J K N
(@) = log {Zwk T /il ij)}
j=1 k=1 i=1



Species archetype models (SAMs)

e Unlike standard mixture models, partial finite mixture of regression models are more
computationally burdensome to fit

©)

Species-specific intercepts/dispersion parameters often done separately in a conditional maximization
step (ECM)
Or update all parameters in a single M-step. This requires a single, large memory GLM which may not
scale well with N and ] (and K)

Consideraset of species j = 1, ..., .J recorded at a set of observational unitsi = 1, ..., N, along with

covariates x;. Let z;j;, = 1 if species j = 1,...,J belongs to archetype k = 1,..., K and zero other-

wise. If we denote ;1 = E(yi;|@i, zjx = 1), then a species archetypal model or SAM is characterized
by

9(pije) = aj + ] Br
[Yij] 25k = 1] = Exp-Fam(u;jx, @)

J K N
() = Zlog{Zwknf(yij|/1'ijka¢j)} 9
=1 k=1  i=1



Approximate and scalable SAMs (asSAMs)

e Approximate each species-archetype contr|but|on with a quadratic/normal approximation
o Note the maximizer is species-specific!

For species j = 1,...,J, write 0, = (o), 8], ¢] )7, and let L;(8;1) = [Tiv, f(yis|ttije: &;)-

Define|; = (&;, 8;, ;) = arg maxa, g, ¢, 108{L;x(8;x)}, and 1(6;) = —V2log{L;«(6;)}.
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Approximate and scalable SAMs (asSAMs)

e Approximate each species-archetype contribution with a quadratic/normal approximation
o Note the maximizer is species-specific!

For species j = 1,...,J, write 0, = (o) , 3], ¢, )", and let L;.(0;1,) = T1Y, f(wiilpije, &;).

Define 8; = (&;, B}, ;) = argmaxa, g,.4, log{L;r(0;)}. and 1(8;) = —V?log{L;x(6,)}. Then con-
sider the quadratic approximation:

N
log{L;x(0;1)} = Z log{ f (yij| tije> @5) }

N o 1 T e N
~ ;log{f(yij‘/“ja @)} — 3 <0jk - 01') 1(6) (Bj’“ B OJ) ’

where [i;; = g7 (u] a; + sz/é]) 11



Approximate and scalable SAMs (asSAMs)

Approximate each species-archetype contribution with a quadratic/normal approximation

o Note the maximizer is species-specific!

e After some algebraic manipulation and collecting terms that constant wrt parameters

k=1

(¥, w) = Z log (Z Wi €Xp [log{ij(ij)}o

~ Coy+ ZIOU zK:wk exp {—% (éj — ij>T I(é]) <é] GJk) }]
k=1

J
=1+ ) log Zwk./\/'{ 0,00, 1(6,) }] 2 s (T, W), (1)
j=1



Approximate and scalable SAMs (asSAMs)

e asSAM = finite mixture of multivariate normals with known covariance matrices

e asSAMs is very amenable to using EM-algorithm
o  M-step updates are all closed-form (details in manuscript)
o Need a pre-step to form the quadratic/normal approximation, but we know how to do this!

e Model selection is easy/scalable
o Choose K using BIC or some variation thereof

o Archetypal (mixture) coefficients: Deploy sparse linear modelling ideas e.g., LASSO, SCAD, BAR etc...

bpssam(¥, 0) = Zlog lzww{ 1656, 1(8;)° }]
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Application to Great Barrier Reef dataset

e Great Barrier Reef Seabed biodiversity project

e Recall:

@)
@)
@)

o O

Presence-absence (binary) responses
N = 1146 sites sampled
J = 235 species (median recorded prevalence = 31)

Nine continuous environmental covariates
Standardized all to have mean zero and variance one

® asSAMs application

@)
@)
@)

All covariates included as linear terms only

Bernoulli distribution with logit link

BIC to choose K; BAR penalty to perform selection on
archetypal coefficients (penalized asSAMs or pasSAMS)

Journal of Multivariate Analysis
Volume 168, November 2018, Pages 334-351

Broken adaptive ridge regression and
its asymptotic properties

Linlin Dai %, Kani Chen ®, Zhihua sun €, Zhengiu Liu d GangLit A=

Show more v

+ Add to Mendeley o share 99 cite

https://doi.org/10.1016/j.jmva.2018.08.007 » Get rights and content 2

Under an Elsevier user license 2 ® Open archive
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Application to Great Barrier Reef dataset

e Great Barrier Reef Seabed biodiversity project

® asSAMs application

O

@)
@)
@)

K =14 species archetypes chosen

All covariates important

Environment-agnostic archetype

Most species classified with high probability; this is
typical of SAMs
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Application to Great Barrier Reef dataset

e Great Barrier Reef Seabed biodiversity project

® asSAMs application e

O

@)
@)
@)

K =14 species archetypes chosen

All covariates important L
Environment-agnostic archetype t0s

Most species classified with high probability; this is

typical of SAMs

e 5-fold spatial cross-validation to compare predictions

@)
@)
@)

Separate logistic regression models

Penalized asSAMs or pasSAMs

Unpenalized asSAMs i.e., no selection on archetypal

coefficients

SAMs fitted ecomix (no approximations) e e

&
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Application to Great Barrier Reef dataset

Difference in AUC (relative to pasSAM)
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Application to Great Barrier Reef dataset

e Great Barrier Reef Seabed biodiversity project

® asSAMs application

O

@)
@)
@)

K =14 species archetypes chosen

All covariates important

Environment-agnostic archetype

Most species classified with relatively high probability

e 5-fold spatial cross-validation to compare predictions

@)
@)

Separate logistic regression models
Penalized asSAMs or pasSAMs
m  -5.7 mins per fold
Unpenalized asSAMs i.e., no selection on archetypal
coefficients
m  -42seconds per fold
SAMs fitted ecomix (no approximations)
m  -56 mins per fold
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Concluding remarks

Manuscript in review; https://github.com/fhui28/assam

The package allows:
o Anumber of response types
o  Fast approximate bootstrap for uncertainty quantification
o  Specific-specific effects besides intercepts e.g., sampling effort, survey effect
o  Specific-specific spatial fields

Future extensions to semi-parametric/ML-based archetypal responses

19


https://github.com/fhui28/assam

= Thanks for listening!

Francis K.C. Hui Home Proje Publications Software ~Contact

o ? About me
ue S 1 O ns ° \ | like anime, drinking tea, and occasionally doing some statistics.
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Community ecology data

Great Barrier Reef Seabed biodiversity project

For the purposes of this talk, we have:

@)
©)
@)

Presence-absence (binary) responses
N = 1146 sites sampled
J = 235 species (median recorded prevalence = 31)
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Species archetype models (SAMs)

e Aim: To understand how each species’ distribution varies as a function of environment

e Cluster species with similar environmental responses into so-called archetypal responses
o  Simpler interpretation and easier to deploy for ecologist/policy makers
o Borrow strength across species

ECOLOQCY Volume 54, 5ue 9 Finite Mixture of Regression

ECOLOGICAL SOCIETY OF AMERICA September 2013

Pages 19131919 i Modeling for High-Dimensional

& Count and Biomass Data in Ecology
es

o
C’ o'o (] Volume 18, pages 357—-375,(2013)  Cite thisarticle

Report [ Free Access

To mix or not to mix: comparing the predictive
performance of mixture models vs. separate
species distribution models

; Im

Published: 16 May 2013

Journal of Agricultural,

Figures References Related Information

Francis K. C. Hui % David I. Warton, Scott D. Foster, Piers K. Dunstan

Biological, and Environ

First published: 01 September 2013 | https://doi.org/10.1890/12- Recommended
1322.1 | Citations: 65

Predictive performance of
NnanlIDl_r2 3

Sescomon ~og s cractac

Wi 25k = I = EXp=ram(i;z, @;)

J K N
(W) = Zlog{Zwka(yijlmjk,cbj)} 22
j=1 k=1 i=1




Species archetype models (SAMs)

e Unlike standard mixture models, partial finite mixture of regression models are more

computationally burdensome to fit
o Some ways to get around this, but not easy to generalize if we have random effects, smooth covariate
terms etc...

Home > Advances in Data Analysis and Classification > Article ) ?)dva?\(esl
in Data Analysis
Maximum likelihood estimation of S
Gaussian mixture models without

matrix operations

Regular Article | Published: 05 June 2015

Home > Statistics and Computing > Article

Mini-batch learning of exponential e
family finite mixture models

Published: 10 January 2020 | Volume 9, pages 371-394, (2015)  Cite this article

Volume 30, pages 731-748,(2020) Cite thisarticle

Statistics and Computi Classification

Download PDF & Aimsand soamme Download PDF %, Aims and scope >
- Alms and scope

. . . — . . . : i i i iversi i 3 i Submit manuscript >
@ Access provided by Australian National University Serials Team, ANU Library Submit manuscript > (P ey e o Uarisy Sertls Moz AUy
_— Hien D. Nguyen {3 & Geoffrey ). McLachlan Use our pre-submission
Hien D. Nguyen (9, Florence Forbes & Geoffrey ). McLachlan Use our pre-submission X ) guyen & y) checklises
X T T T

() = Z log {Zwk H I (i | e qu)} 23
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Species archetype models (SAMs)

e Unlike standard mixture models, partial finite mixture of regression models are more

computationally burdensome to fit
o Some ways to get around this, but not easy to generalize if we have random effects, smooth covariate

terms etc...

e Unlike (partial) finite mixture of regressions model in other settings, we have multiple
observations per “object” we wish to cluster (N sites within each species)

Consideraset of species j = 1, ..., .J recorded at a set of observational unitsi = 1, ..., N, along with
covariates x;. Let z;j;, = 1 if species j = 1,...,J belongs to archetype k = 1,..., K and zero other-
wise. If we denote ;1 = E(yi;|@i, zjx = 1), then a species archetypal model or SAM is characterized
by

9(pije) = aj + ] Br
[Yi;] 25k = 1] = Exp-Fam(u;jx, @)

J K N
(D) = ;log{;Wkllf(yij|/1'ijkv¢j)} 24



Species archetype models (SAMs)
e Aim: To understand how each species’ distribution varies as a function of environment

e Cluster species with similar environmental responses into so-called archetypal responses
o  Simpler interpretation and easier to deploy for ecologist/policy makers

o Borrow strength across species
o A’partial” finite mixture of regression models

Consideraset of species j = 1, ..., .J recorded at a set of observational unitsi = 1, ..., N, along with
covariates x;. Let z;j;, = 1 if species j = 1,...,J belongs to archetype k = 1,..., K and zero other-
wise. If we denote ;1 = E(yi;|@i, zjx = 1), then a species archetypal model or SAM is characterized
by

9(pije) = aj + ] Br
[Yij] 25k = 1] = Exp-Fam(u;jx, @)

J K N
(¥) =3 log {Zwk L1 /il cbj)} 25
j=1 k=1 =1



Approximate and scalable SAMs (asSAMs)

e Inference via bootstrapping
o Uncertainty due to making the quadratic/normal approximation
o Uncertainty due to sampling variability given on the approximation

lassam (¥, w) Zlog [ZWkN{ 0;10,1, 1(6;)" }]
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Approximate and scalable SAMs (asSAMs)

e Fast approximate bootstrap for asSAMs
reertainty-cueto-making theetadrati =t atton (goes away with large N?)
o Uncertainty due to sampling variability given the approximation (dominant source; goes away with
large ] and N?)

lassam (¥, w) Zlog [ZWkN{ 0;10,1, 1(6;)" }]
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Approximate and scalable SAMs (asSAMs)

e Fast approximate bootstrap for asSAMs
o Bootstrap confidence intervals for parameter estimates, fitted values, predictions follow

Given asSAM estimates (BT, &T)7,

o . . s
1. For species j = 1,...,.J, simulate component labels 2 = (z,...,2;)" from a multinomial

distribution with trial size equal to one and probability vector w;

2. Conditional on 2}, = 1, simulate 87 = (o', 3;",¢;")" from a multivariate normal distribution

with mean vector 8;, = (&, 3] ,qﬁT)T and covariance matrix I(0;)~";

3. Given bootstrap dataset {0;;]' =1,...,J}, maximize l,sam (¥, w) and obtain bootstrap asSAM

estimates (U3, w17,

ﬁassam ‘IJ w Zlog ZwkN{ ]lojk I( ) }
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Application to Great Barrier Reef dataset

e Example: Great Barrier Seabed biodiversity project

® asSAMs application

O

@)
@)
@)

K =14 species archetypes chosen
All covariates important
Environment-agnostic archetype

Most species classified with relatively high probability;

this is typical of (as)SAMs
The rarity of most species is clear!

Relative frequency
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Application to Great Barrier Reef dataset

e Great Barrier Reef Seabed biodiversity project

® asSAMs application
o K =14 species archetypes chosen
o  All covariates important
o  Environment-agnostic archetype
o Most species classified with relatively high probability;
this is typical of (as)SAMs

050
Probabilities

Archatype 1 | Avchorypo s [l Acnetypo 7 [ Achetype 10 [ Archeypo 13
Posterior probability Archetype 2 Archetype 5 [l Archetype 8 . Archetype 11 . Archetype 14

Archetype 3 Acchetype 6 [l Archotype o [l Archetypo 12




Concluding remarks

e Manuscript in preparation; https://github.com/fhui28/assam

e The package allows:
o Anumber of response types

o  Specific-specific effects besides intercepts e.g., sampling effort, survey effect

o  Specific-specific spatial fields

e Extensions to semi-parametric/ML-based archetypz
o  Careful consideration of how to perform the quadratic

issue here)
o  Spatially-varying effects/spatio-temporal asSAMs foll

e Hierarchical asSAMs?

Home > Journal of Agricultural, Biological and Environmental Statistics > Article

Greater Than the Sum of its Parts:
Computationally Flexible Bayesian
ierarchical Modeling

Download PDF & @ You have full access to this of

Devin S. Johnson (9, Brian M. Brost & Mevin B. Hooten

O  Fit a finite mixture on the species-specific slopes rather than on the responses

o  Allows for heterogeneity within an archetype

Journal of Agricultural,
Biological and Environmental
Statistics

Aims and scope >
Submit manuscri ipt >
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Appendix

Algorithm 1 Computing asSAM estimates
Require: Multivariate abundance data {(y;;,x;);¢ = 1,...,N;j = 1,...,J}; number of
archetypes set to K; mapping matrix M ; tolerance value e.g., e = 1074
1: Fit J separate generalized linear models, via parallel computing if possible. That is, for
j=1,...,J, compute

= (&, 0, ¢;) = arg max log{L;x(0;x)},

a;,Br,®;

and also 1(8;) = —V2log{L;.(6;)}.

2: Construct a set of initial values (\II(O)T oOT)T from step 1 e.g., apply a K-medoids algo-
rithm to the estimates {Bj;j =1,..., J} to obtain (,Bio)T, e 5?) ).

3: fort=1,2...do

e E-step: Construct é§2 = (dgt), B,(:)T, qggt)T)T, and compute the posterior probabili-

ties
A(f) (t) 1
s GONTB16]). 16 ) } e
7; — . sk =1s::13
Yot GON {65165, I( 1y
(2 D 2 6+1) :
* M-step: Update the mixing proportions as w,, Zj 1 Tjx - and the remain-

ing parameters as
\i,(t+1) — (MTW(t+1)M)—1 MTW(t-s—l)é’

where ® = (1, ®8],...,1,®8))T and W+ is a block-diagonal matrix where
block j = 1,...,J equals Diag(+ (Hl)) ® I(6;).

until [Cssam (¥, GEDY = Lo (D H0)| < €.

4: end for R

5: return Estimates (U ,w")" and posterior probabilities {7j1;7 = 1,...,75;k =
1,...,K}.
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